Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes.

نویسندگان

  • Cheng-Heng Liao
  • Lili Yao
  • Ya Xu
  • Wei-Bing Liu
  • Ying Zhou
  • Bang-Ce Ye
چکیده

The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that ...

متن کامل

Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor

Interaction of regulatory networks is a subject of great interest in systems biology of bacteria. Phosphate control of metabolism in Streptomyces is mediated by the two-component system PhoR-PhoP. Similarly, the utilization of different nitrogen sources is controlled by the regulator GlnR. Transcriptomic and biochemical analysis revealed that glnA (encoding a glutamine synthetase), glnR and oth...

متن کامل

A genomic view on nitrogen metabolism and nitrogen control in mycobacteria.

Knowledge about nitrogen metabolism and control in the genus Mycobacterium is sparse, especially compared to the state of knowledge in related actinomycetes like Streptomyces coelicolor or the close relative Corynebacterium glutamicum. Therefore, we screened the published genome sequences of Mycobacterium smegmatis, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium ssp. parat...

متن کامل

Cross‐talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces

Limitation of different nutrients in Streptomyces coelicolor A3(2) triggers nutrient-stress responses, mediated by PhoP, GlnR, AfsR and other regulators, that are integrated at the molecular level and control secondary metabolite biosynthesis and differentiation. In addition, utilization of chitin or N-acetylglucosamine regulates secondary metabolite biosynthesis by a mechanism mediated by DasR...

متن کامل

Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge interactions.

The OmpR/PhoB subfamily protein GlnR of actinomycetes is an orphan response regulator that globally coordinates the expression of genes related to nitrogen metabolism. Biochemical and genetic analyses reveal that the functional GlnR from Amycolatopsis mediterranei is unphosphorylated at the potential phosphorylation Asp(50) residue in the N-terminal receiver domain. The crystal structure of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 51  شماره 

صفحات  -

تاریخ انتشار 2015